Thank you for sending your enquiry! One of our team members will contact you shortly.
Thank you for sending your booking! One of our team members will contact you shortly.
Course Outline
Fundamentals and Principles of Data Mesh
Module 1: Introduction and Context
- Evolution of data architecture: DW, Data Lake, and the emergence of Data Mesh
- Common problems in centralized architectures
- Guiding principles of the Data Mesh approach
Module 2: Principle 1 – Domain-Oriented Data Ownership
- Domain-oriented organization
- Benefits and challenges of decentralizing responsibility
- Practical cases: defining domains in a real company
Module 3: Principle 2 – Data as a Product
- What is a “data product”
- Roles of the data product owner
- Best practices for designing data products
- Practical exercise: design a data product in teams
Platform, Governance, and Operational Design
Module 4: Principle 3 – Self-Service Platform
- Components of a modern data platform
- Common tools in a Data Mesh ecosystem (Kafka, dbt, Snowflake, etc.)
- Exercise: design of a self-service platform architecture
Module 5: Principle 4 – Federated Governance
- Governance in distributed environments
- Policies, standards, and automation
- Implementation of data quality, security, and privacy policies
Module 6: Organizational Design and Cultural Change
- New roles in Data Mesh: data product owner, platform team, domain teams
- How to align incentives between domains
- Cultural transformation and change management
Implementation, Tools, and Simulation
Module 7: Adoption and Implementation Strategies
- Roadmap for implementing Data Mesh in phases
- Criteria for selecting pilot domains
- Lessons learned from real implementations
Module 8: Tools, Technologies, and Case Studies
- Technology stack compatible with Data Mesh
- Implementation examples (Netflix, Zalando, etc.)
- Analysis of success and failure
Module 9: Exam Simulation and Practical Cases
- Review exercises by module
- Mock certification exam
- Review of results and discussion
Requirements
• Basic knowledge of data management, data architecture, or data engineering
• Familiarity with concepts such as Data Warehouse, Data Lake, ETL/ELT
• Desirable: experience in enterprise-level data projects
21 Hours
Testimonials (1)
The ability to Engauge on a 1:1 basis and ensure I had clarity and understanding on the concepts discussed.